题目内容
a、b为常数,
解法一:由于
(a
-bn)
=![]()
![]()
=![]()
=1,
∴
∴a=2
,b=4.
解法二:由已知
n(a
)=1,
从而
[n(a
)]存在极限.
![]()
[n(a
-b)]
=![]()
·
n(a
-b)
=0×1=0,
∴
(a
-b)=0.
∴
a-b=0.
又
(a
-bn)
=
(a
-
an)
=
a·![]()
=a·![]()
=
=1,
∴a=2
,b=4.
点评:解法一的主要步骤是“分子有理化”.解法二利用了“若![]()
[nf(n)]=0,则
f(n)=0”这一结论.
练习册系列答案
相关题目