题目内容

若数列{an}的前n项和为Sn,a1=1,Sn+an=2n(n∈N*)
(1)证明:数列{an-2}为等比数列;
(2)求数列{Sn}的前n项和Tn
分析:(1)利用当n≥2时,an=Sn-Sn-1,可得,2an-an-1=2,变形为2(an-2)=an-1-2,可得数列{an-2}为等比数列;
(2)利用(1)可得an,利用已知Sn+an=2n可得Sn,再利用等差数列和等比数列的前n项和公式即可得出.
解答:解:(1)∵Sn+an=2n,①
∴Sn-1+an-1=2(n-1),n≥2②
由①-②得,2an-an-1=2,n≥2,∴2(an-2)=an-1-2,n≥2,
∵a1-2=-1,
∴数列{an-2}以-1为首项,
1
2
为公比的等比数列.
(2)由(1)得an-2=-(
1
2
)n-1
,∴an=2-(
1
2
)n-1

∵Sn+an=2n,∴Sn=2n-an=2n-2+(
1
2
)n-1

Tn=[0+(
1
2
)0]+[2+(
1
2
)]+…+[2n-2+(
1
2
)n-1]

=[0+2+…+(2n-2)]+[(
1
2
)0+(
1
2
)+…+(
1
2
)n-1]

=
n(2n-2)
2
+
1-(
1
2
)
n
1-
1
2
=n2-n+2-(
1
2
)n-1
点评:本题考查了经过变形转化为等比数列、等差数列和等比数列的前n项和公式等基础知识与基本技能方法,属于难题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网