题目内容
曲线f(x)=
ex-f(0)x+
x2在点(1,f(1))处的切线方程为______.
| f′(1) |
| e |
| 1 |
| 2 |
由题意,f′(x)=
ex-f(0)+x,f(0)=
∴f′(1)=
e-
+1=e
∴f(x)=ex-1+
x2
∴f(1)=e-
∴所求切线方程为y-e+
=e(x-1),即y=ex-
故答案为:y=ex-
| f′(1) |
| e |
| f′(1) |
| e |
∴f′(1)=
| f′(1) |
| e |
| f′(1) |
| e |
∴f(x)=ex-1+
| 1 |
| 2 |
∴f(1)=e-
| 1 |
| 2 |
∴所求切线方程为y-e+
| 1 |
| 2 |
| 1 |
| 2 |
故答案为:y=ex-
| 1 |
| 2 |
练习册系列答案
相关题目