题目内容

△ABC中内角A,B,C的对边分别为a,b,c,向量
m
=(2sinB,-
3
),
n
=(cos2B,2cos2
B
2
-1)且
m
n

(Ⅰ)求锐角B的大小;
(Ⅱ)如果b=2,求△ABC的面积S△ABC的最大值.
(Ⅰ)∵
m
=(2sinB,-
3
),
n
=(cos2B,2cos2
B
2
-1)且
m
n

∴2sinB(2cos2
B
2
-1)=-
3
cos2B,
∴2sinBcosB=-
3
cos2B,即sin2B=-
3
cos2B,
∴tan2B=-
3

又B为锐角,∴2B∈(0,π),
∴2B=
3

则B=
π
3
;…(6分)
(Ⅱ)∵B=
π
3
,b=2,
∴由余弦定理cosB=
a2+c2-b2
2ac
得:a2+c2-ac-4=0,
又a2+c2≥2ac,代入上式得:ac≤4(当且仅当a=c=2时等号成立),
∴S△ABC=
1
2
acsinB=
3
4
ac≤
3
(当且仅当a=c=2时等号成立),
则S△ABC的最大值为
3
.…(12分)
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网