题目内容
【题目】已知数列
满足:![]()
(1)求
的值;
(2)求证:数列
是等比数列;
(3)令
(
),如果对任意
,都有
,求实数
的取值范围.
【答案】(1)
;(2)
是以
为首相
为公比的等比数列;
(3)![]()
【解析】
试题分析:(1)利用赋值法,令
可求
;
(2)将等式写到
,再将得到的式子与已知等式联立,两式再相减,根据等比数列的定
,可证明
是以
为首相
为公比的等比数列;
(3)由(2)可写出
,利用数列的单调性当
时,
,当
时,
,因此,数列
的最大值为
,则
可解的
的范围.
试题解析:(1)
(2)由题可知:
①
②
②-①可得
即:
,又![]()
∴数列
是以
为首项,以
为公比的等比数列
(3)由(2)可得
, ![]()
由
可得![]()
由
可得
,所以 ![]()
故
有最大值
所以,对任意
,有![]()
如果对任意
,都有
,即
成立,
则
,故有:
,解得
或![]()
∴实数
的取值范围是![]()
练习册系列答案
相关题目
【题目】
某园艺公司种植了一批名贵树苗,为了解树苗的生长情况,从这批树苗中随机地测量了
棵树苗的高度(单位:厘米),并把这些高度列成如下的频数分布表:
组别 |
|
|
|
|
|
|
频数 | 2 | 4 | 11 | 16 | 13 | 4 |
(Ⅰ)在这批树苗中任取一棵,其高度在
厘米以上的概率大约是多少?这批树苗的平均高度大约是多少?
(Ⅱ)为了进一步获得研究资料,标记
组中的树苗为
,
组中的树苗为
,现从
组中移出一棵树苗,从
组中移出两棵树苗进行试验研究,则
组的树苗
和
组的树苗
同时被移出的概率是多少?