题目内容

(2013•杨浦区一模)已知椭圆C:
x2
a2
+
y2
b2
=1的两个焦点分别是F1(-1,0)、F2(1,0),且焦距是椭圆C上一点p到两焦点F1,F2距离的等差中项.
(1)求椭圆C的方程;
(2)设经过点F2的直线交椭圆C于M,N两点,线段MN的垂直平分线交y轴于点Q(x0,y0),求y0的取值范围.
分析:(1)先确定椭圆C的半焦距,再利用焦距是椭圆C上一点p到两焦点F1,F2距离的等差中项,求出a的值,从而可得椭圆的标准方程;
(2)分类讨论,设出直线方程代入椭圆方程,确定线段MN的垂直平分线方程,可得Q的纵坐标,利用基本不等式,即可求得y0的取值范围.
解答:解:(1)设椭圆C的半焦距是c.依题意,得c=1.…(1分)
由题意焦距是椭圆C上一点p到两焦点F1,F2距离的等差中项,得4c=2a,∴a=2
∴b2=a2-c2=3.…(4分)
故椭圆C的方程为 
x2
4
+
y2
3
=1
.…(6分)
(2)解:当MN⊥x轴时,显然y0=0.…(7分)
当MN与x轴不垂直时,可设直线MN的方程为y=k(x-1)(k≠0).
代入椭圆方程,消去y整理得(3+4k2)x2-8k2 x+4(k2-3)=0.…(9分)
设M(x1,y1),N(x2,y2),线段MN的中点为Q(x3,y3),则x1+x2=
8k2
3+4k2
.…(10分)
所以x3=
4k2
3+4k2
,y3=k(x3-1)=
-3k
3+4k2

∴线段MN的垂直平分线方程为y+
3k
3+4k2
=-
1
k
(x-
4k2
3+4k2
).
在上述方程中令x=0,得y0=
k
3+4k2
=
1
3
k
+4k
.…(12分)
当k<0时,
3
k
+4k
≤-4
3
;当k>0时,
3
k
+4k
≥4
3

所以-
3
12
≤y0<0,或0<y0
3
12
.…(13分)
综上,y0的取值范围是[-
3
12
3
12
].…(14分)
点评:本题考查椭圆的标准方程,考查直线与椭圆的位置关系,考查学生分析解决问题的能力,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网