题目内容

已知函数,其中

(Ⅰ)当时,求曲线在点处的切线方程;

(Ⅱ)当时,求函数的单调区间与极值.

在区间,内为增函数,在区间内为减函数.

函数处取得极大值,且

函数处取得极小值,且


解析:

时,

,则

所以,曲线在点处的切线方程为

(Ⅱ)解:

由于,以下分两种情况讨论.

(1)当时,令,得到,

变化时,的变化情况如下表:

0

0

极小值

极大值

所以在区间,内为减函数,在区间内为增函数

故函数在点处取得极小值,且

函数在点处取得极大值,且

(2)当时,令,得到

变化时,的变化情况如下表:

0

0

极大值

极小值

所以在区间,内为增函数,在区间内为减函数.

函数处取得极大值,且

函数处取得极小值,且

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网