题目内容

直线y=kx+1,当k变化时,直线被椭圆数学公式截得的最大弦长是


  1. A.
    4
  2. B.
    2
  3. C.
    数学公式
  4. D.
    不能确定
C
分析:直线y=kx+1恒过定点P(0,1),且是椭圆的短轴上顶点,因而此直线被椭圆截得的弦长,即为点P与椭圆上任意一点Q的距离,设椭圆上任意一点Q(2cosθ,sinθ),利用三角函数即可得到结论.
解答:直线y=kx+1恒过定点P(0,1),且是椭圆的短轴上顶点,因而此直线被椭圆截得的弦长,即为点P与椭圆上任意一点Q的距离,设椭圆上任意一点Q(2cosθ,sinθ)
∴|PQ|2=(2cosθ)2+(sinθ-1)2=-3sin2θ-2sinθ+5
∴当sinθ=-时,

故选C
点评:本题考查直线与椭圆的位置关系,考查三角函数知识,解题的关键是将问题转化为点P与椭圆上任意一点Q的距离的最大值.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网