题目内容
设函数
(x>0),则y=f(x) (
)
A.在区间
,(1,e)内均有零点
B.在区间
,(1,e)内均无零点
C.在区间
内有零点,在区间(1,e)内无零点
D.在区间
内无零点,在区间(1,e)内有零点
【答案】
:D
【解析】:
,导函数为
,函数在(0,3)上为减函数,
,因此在区间
内无零点,在区间(1,e)内有零点
练习册系列答案
相关题目
已知函数
,
.
(Ⅰ)若函数
和函数
在区间
上均为增函数,求实数
的取值范围;
(Ⅱ)若方程
有唯一解,求实数
的值.
【解析】第一问,
当0<x<2时,
,当x>2时,
,
要使
在(a,a+1)上递增,必须![]()
![]()
如使
在(a,a+1)上递增,必须
,即![]()
由上得出,当
时
,
在
上均为增函数
(Ⅱ)中方程
有唯一解
有唯一解
设
(x>0)
随x变化如下表
|
x |
|
|
|
|
|
- |
|
+ |
|
|
|
极小值 |
|
由于在
上,
只有一个极小值,![]()
的最小值为-24-16ln2,
当m=-24-16ln2时,方程
有唯一解得到结论。
(Ⅰ)解:
当0<x<2时,
,当x>2时,
,
要使
在(a,a+1)上递增,必须![]()
![]()
如使
在(a,a+1)上递增,必须
,即![]()
由上得出,当
时
,
在
上均为增函数 ……………6分
(Ⅱ)方程
有唯一解
有唯一解
设
(x>0)
随x变化如下表
|
x |
|
|
|
|
|
- |
|
+ |
|
|
|
极小值 |
|
由于在
上,
只有一个极小值,![]()
的最小值为-24-16ln2,
当m=-24-16ln2时,方程
有唯一解