ÌâÄ¿ÄÚÈÝ
1£®ÉèµãM£¨x£¬y£©Âú×ã²»µÈʽ×é$\left\{\begin{array}{l}{3x-y-6¡Ü0}\\{x-y+2¡Ý0}\\{x¡Ý0£¬y¡Ý0}\end{array}\right.$£¬µãP£¨$\frac{1}{a}$£¬$\frac{1}{b}$£©£¨a£¾0£¬b£¾0£©£¬µ±$\overrightarrow{OP}$•$\overrightarrow{OM}$×î´óʱ£¬µãMΪ£¨¡¡¡¡£©| A£® | £¨0£¬2£© | B£® | £¨0£¬0£© | C£® | £¨4£¬6£© | D£® | £¨2£¬0£© |
·ÖÎö ÓÉÌâÒâ×÷Æ½ÃæÇøÓò£¬´Ó¶ø»¯¼ò$\overrightarrow{OP}$•$\overrightarrow{OM}$=£¨$\frac{1}{a}$£¬$\frac{1}{b}$£©•£¨x£¬y£©=$\frac{x}{a}$+$\frac{y}{b}$£¬´Ó¶øÈ·¶¨×î´óֵʱµÄµã¼´¿É£®
½â´ð ½â£ºÓÉÌâÒâ×÷Æ½ÃæÇøÓòÈçÏ£¬
£¬
$\overrightarrow{OP}$•$\overrightarrow{OM}$=£¨$\frac{1}{a}$£¬$\frac{1}{b}$£©•£¨x£¬y£©=$\frac{x}{a}$+$\frac{y}{b}$£¬
¹Êµ±x£¬y¶¼ÓÐ×î´óֵʱ£¬
¼´x=4£¬y=6ʱ£¬ÓÐ×î´óÖµ£»
¹ÊÑ¡C£®
µãÆÀ ±¾Ì⿼²éÁËÏßÐԹ滮µÄ½â·¨¼°ÊýÐνáºÏµÄ˼Ïë·½·¨Ó¦Óã¬ÊôÓÚÖеµÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
9£®ÒÑ֪˫ÇúÏß$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾0£¬b£¾0£©µÄ×óÓÒ¶¥µã·Ö±ðΪA¡¢B£¬ÐéÖáµÄ¶ËµãÔÚÒÔÔµãΪԲÐÄ£¬|AB|Ϊֱ¾¶µÄÔ²ÉÏ£¬PΪ¸ÃË«ÇúÏßÉÏÒ»µã£¬ÈôÖ±ÏßPBµÄбÂÊΪ$\sqrt{2}$£¬ÔòÖ±ÏßPAµÄбÂÊΪ£¨¡¡¡¡£©
| A£® | $\frac{1}{2}$ | B£® | $\frac{\sqrt{2}}{2}$ | C£® | $\frac{\sqrt{3}}{3}$ | D£® | $\frac{\sqrt{3}}{2}$ |
16£®º¯Êýf£¨x£©=Asin£¨x+¦Õ£©£¨A£¾0£©ÔÚx=$\frac{¦Ð}{3}$´¦È¡µÃ×îСֵ£¬Ôò£¨¡¡¡¡£©
| A£® | f£¨x+$\frac{¦Ð}{3}$£©ÊÇÆæº¯Êý | B£® | f£¨x+$\frac{¦Ð}{3}$£©ÊÇżº¯Êý | C£® | f£¨x-$\frac{¦Ð}{3}$£©ÊÇÆæº¯Êý | D£® | f£¨x-$\frac{¦Ð}{3}$£©ÊÇżº¯Êý |
13£®ÊýÁÐ{an}µÄͨÏʽΪan=2n-1£¬ÔòǰnÏîºÍSn=£¨¡¡¡¡£©
| A£® | n2-1 | B£® | n2 | C£® | n2+1 | D£® | £¨n+1£©2 |
10£®Èô$\frac{¦Á}{2}$ÊǵÚËÄÏóÏ޽ǣ¬ÇÒsin$\frac{¦Á}{2}$=-$\frac{\sqrt{3}}{3}$£¬Ôòcos¦Á=$\frac{1}{3}$£®
3£®ÔÚÖ±ÈýÀâÖùÖУ¬¡ÏACB=90¡ã£¬AC=BC=1£¬²àÀâAA1=$\sqrt{2}$£¬MΪA1B1µÄÖе㣬ÔòAMÓëÆ½ÃæAA1C1CËù³É½ÇµÄÕýÇÐֵΪ£¨¡¡¡¡£©
| A£® | $\frac{1}{3}$ | B£® | $\frac{\sqrt{3}}{3}$ | C£® | $\frac{\sqrt{2}}{3}$ | D£® | $\frac{2}{3}$ |