题目内容

如图,在四面体OABC中,G是底面△ABC的重心,则
OG
等于(  )
精英家教网
A、
OA
+
OB
+
OC
B、
1
2
OA
+
1
2
OB
+
1
2
OC
C、
1
2
OA
+
1
3
OB
+
1
6
OC
D、
1
3
OA
+
1
3
OB
+
1
3
OC
分析:利用重心的性质和向量的三角形法则即可得出.
解答:解:如图所示,连接AG并延长与BC相交于点D.精英家教网
∵点G是底面△ABC的重心,
AG
=
2
3
AD
AD
=
1
2
(
AB
+
AC
)

OG
=
OA
+
AG
=
OA
+
2
3
×
1
2
(
AB
+
AC
)

=
OA
+
1
3
(
AB
+
AC
)

AB
=
OB
-
OA
AC
=
OC
-
OA

OG
=
OA
+
1
3
(
OB
-
OA
+
OC
-
OA
)

=
1
3
(
OA
+
OB
+
OC
)

故选:D.
点评:本题考查了重心的性质和向量的三角形法则,属于基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网