题目内容

记定义在[-1,1]上的函数f(x)=x2+px+q(p,q∈R)的最大值与最小值分别为M,m.又记h(p)=M-m.
(Ⅰ)当0≤p≤2时,求M、m(用p,q表示),并证明h(p)≥1;
(Ⅱ)写出h(p)的解析式(不必写出求解过程);
(Ⅲ)在所有形如题设的函数f(x)中,求出这样的f(x),使得|f(x)|的最大值为最小.
分析:(Ⅰ)根据每件0≤p≤2?-1≤-
p
2
≤0
,又f(x)图象开口向上,得出最大值与最小值,从而求得h(p)并证明h(p)≥1;
(Ⅱ)对字母p进行分类讨论后写出出h(p)的解析式即可;
(Ⅲ)由(Ⅱ)知h(p)的解析式,结合M-m≥1及取得最值的条件得出,p=0,M=1+q,m=q.最后结合由M=-m得1+q=-q求得q,最后写出所求函数式即可.
解答:解:(Ⅰ)0≤p≤2?-1≤-
p
2
≤0
,又f(x)图象开口向上,
M=f(1)=1+p+q,m=f(-
p
2
)=q-
p2
4

h(p)=M-m=
1
4
(p+2)2≥1
(4分)
(Ⅱ)h(p)=
-2p
  (p<-2)
1
4
(p-2)2
  (-2≤p<0)
1
4
(p+2)2
  (0≤p≤2)
2p,
, 
 
  (p>2)

(Ⅲ)由(Ⅱ)知h(p)=M-m=
-2p>4
  (p<-2)
1
4
(p-2)2>1,
  (-2≤p<0)
1
4
(p+2)2≥1,
  (0≤p≤2)
2p>4,
, 
 
  (p>2)
,∴M-m≥1.
∵在[-1,1]上,总有|f(x)|max
M-m
2
,当且仅当M=-m时取”=”;
又,
M-m
2
1
2
,当且仅当p=0时取“=”,
∴当
M-m
2
=
1
2
时的f(x)符合条件.
此时,p=0,M=1+q,m=q.由M=-m得1+q=-q.∴q=-
1
2

即所求函数为:f(x)=x2-
1
2
.(13分)
点评:本小题主要考查函数解析式的求解及常用方法、函数的最值及其几何意义等基础知识,考查运算求解能力与转化思想.属于基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网