题目内容
(2013•许昌三模)已知函数,f(x)=
,数列{an}满足a1=1,an+1=f(an)(n∈N*)
(I)求证数列{
}是等差数列,并求数列{an}的通项公式;
(II)记Sn=a1a2+a2a3+..anan+1,求Sn.
| x |
| 3x+1 |
(I)求证数列{
| 1 |
| an |
(II)记Sn=a1a2+a2a3+..anan+1,求Sn.
分析:(I)直接利用an+1=f(an)得到an+1=
.再对其取倒数整理即可证数列{
}是等差数列;进而求出数列{an}的通项公式;
(II)利用(I)的结论以及所问问题的形式,直接利用裂项相消求和法即可求Sn.
| an |
| 3an+1 |
| 1 |
| an |
(II)利用(I)的结论以及所问问题的形式,直接利用裂项相消求和法即可求Sn.
解答:解:(I)由条件得,an+1=
.
∴
=
+3⇒
-
=3.
∴数列{
}是首项为
=1,公差d=3的等差数列.
∴
=1+(n-1)×3=3n-2.
故an=
.
(II)∵anan+1=
=
(
-
).
∴Sn═a1a2+a2a3+..anan+1
=
[(1-
)+(
-
)+…+(
-
)]
=
(1-
)=
.
| an |
| 3an+1 |
∴
| 1 |
| an+1 |
| 1 |
| an |
| 1 |
| an+1 |
| 1 |
| an |
∴数列{
| 1 |
| an |
| 1 |
| a1 |
∴
| 1 |
| an |
故an=
| 1 |
| 3n-2 |
(II)∵anan+1=
| 1 |
| (3n-2)(3n+1) |
| 1 |
| 3 |
| 1 |
| 3n-2 |
| 1 |
| 3n+1 |
∴Sn═a1a2+a2a3+..anan+1
=
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| 4 |
| 1 |
| 7 |
| 1 |
| 3n-2 |
| 1 |
| 3n+1 |
=
| 1 |
| 3 |
| 1 |
| 3n+1 |
| n |
| 3n+1 |
点评:本题第二问主要考查了数列求和的裂项相消法.裂项相消法一般适用于一数列的通项是一分式形式且分子为常数,而分母是某一等差数列相邻两项的乘积组成.
练习册系列答案
相关题目