题目内容
下列各种情况中,各平面向量的终点的集合分别是什么图形?
(1)把所有单位向量的起点平移到同一点P;
(2)把平行于直线l的所有单位向量的起点平移到直线l上的点P;
(3)把平行于直线l的所有向量的起点平移到直线l上的点P.
答案:
解析:
解析:
|
解:(1)以P为起点的单位向量有无数个,因为单位向量的模都是1,所以由它们的终点构成的图形是以P为圆心的单位圆; (2)所有平行于直线l的单位向量只有两个方向,所以由它们组成的集合是直线上到P点的距离为单位长度的两个点; (3)平行于直线l的所有向量起点在P点,因为向量的模不定,则终点可以是直线上的任意点,故可以构成直线l. 点评:第(3)小题中注意可这样理解,设平行于l的单位向量为a,则λa∥a,其中λ为任意实数R,故这样的向量布满直线l. |
练习册系列答案
相关题目