题目内容
11.已知数列{an}满足:a1=$\frac{3}{2}$,an=2-$\frac{1}{{a}_{n-1}}$(n≥2)(1)若bn=$\frac{1}{{a}_{n}-1}$,证明:{bn}为等差数列;
(2)若cn=$\frac{4}{{a}_{n}-1}$-5,Sn为{cn}的前n项和,求证:$\frac{1}{{S}_{1}-1}$+$\frac{1}{{S}_{2}-1}$+…+$\frac{1}{{S}_{n}-1}$<$\frac{73}{90}$.
分析 (1)易得an+1an=2an-1,从而bn+1-bn=$\frac{1}{{a}_{n+1}-1}$-$\frac{1}{{a}_{n}-1}$,化简得bn+1-bn=1,故数列{bn}为首项为2、公差为1的等差数列;
(2)数列{bn}的前n项和Tn=$2n+\frac{n(n-1)}{2}$=$\frac{{n}^{2}+3n}{2}$,则Sn=4Tn-5n=4×$\frac{{n}^{2}+3n}{2}$-5n=2n2+n,将$\frac{1}{{S}_{n}-1}$放大至$\frac{1}{2}(\frac{1}{n-1}-\frac{1}{n})$,再将$\frac{1}{{S}_{1}-1}$+$\frac{1}{{S}_{2}-1}$+…+$\frac{1}{{S}_{n}-1}$中第6项以后放缩即可.
解答 证明:由an=2-$\frac{1}{{a}_{n}-1}$可知anan-1=2an-1-1,所以an+1an=2an-1.
(1)∵bn=$\frac{1}{{a}_{n}-1}$,
∴bn+1-bn=$\frac{1}{{a}_{n+1}-1}$-$\frac{1}{{a}_{n}-1}$
=$\frac{{a}_{n}-1-{a}_{n+1}+1}{({a}_{n+1}-1)({a}_{n}-1)}$
=$\frac{{a}_{n}-{a}_{n+1}}{{a}_{n}{a}_{n+1}-{a}_{n}-{a}_{n+1}+1}$
=$\frac{{a}_{n}-{a}_{n+1}}{2{a}_{n}-1-{a}_{n}-{a}_{n+1}+1}$
=1,
又${b}_{1}=\frac{1}{{a}_{1}-1}$=$\frac{1}{\frac{3}{2}-1}$=2,
故数列{bn}为首项为2、公差为1的等差数列;
(2)由(1)知,数列{bn}的前n项和Tn为:
Tn=$2n+\frac{n(n-1)}{2}$=$\frac{{n}^{2}+3n}{2}$,
又cn=$\frac{4}{{a}_{n}-1}$-5,
所以{cn}的前n项和Sn为:
Sn=4Tn-5n=4×$\frac{{n}^{2}+3n}{2}$-5n=2n2+n,
则$\frac{1}{{S}_{n}-1}$=$\frac{1}{2{n}^{2}+n-1}$=$\frac{1}{(2n-1)(n+1)}$
又2n2+n-1>2n2-2n=2n(n-1)
所以$\frac{1}{{S}_{n}-1}$<$\frac{1}{2}(\frac{1}{n-1}-\frac{1}{n})$,
所以$\frac{1}{{S}_{1}-1}$+$\frac{1}{{S}_{2}-1}$+…+$\frac{1}{{S}_{n}-1}$
<$\frac{1}{1×2}$+$\frac{1}{3×3}$+$\frac{1}{5×4}$+$\frac{1}{7×5}$+$\frac{1}{9×6}$+$\frac{1}{2}$[$\frac{1}{5}$-$\frac{1}{6}$+…+$\frac{1}{n-1}$-$\frac{1}{n}$]
<$\frac{1}{2}$+$\frac{1}{9}$+$\frac{1}{20}$+$\frac{1}{35}$+$\frac{1}{54}$+$\frac{1}{10}$
=$\frac{30550}{37800}$<$\frac{73}{90}$,
即$\frac{1}{{S}_{1}-1}$+$\frac{1}{{S}_{2}-1}$+…+$\frac{1}{{S}_{n}-1}$<$\frac{73}{90}$.
点评 本题考查了递推式的应用、“裂项求和”以及放缩法,考查了推理能力与计算能力,属于难题.