搜索
题目内容
函数f(x)是奇函数,且x>0时,f(x)=10
x
,则x<0时,f(x)=______.
试题答案
相关练习册答案
设x<0,则-x>0,
∴f(-x)=10
-x
又∵f(x)是奇函数
∴f(x)=-f(-x)=-10
-x
故答案为:-10
-x
练习册系列答案
一通百通课堂小练系列答案
高中新课标同步作业黄山书社系列答案
中考利剑中考试卷汇编系列答案
单元优化全能练考卷系列答案
教育世家状元卷系列答案
黄冈课堂作业本系列答案
新金牌英语组合训练系列答案
单元加期末复习先锋大考卷系列答案
衔接课程系列答案
夺冠冲刺卷系列答案
相关题目
已知函数
f(x)=x-
a
x
(a>0),有下列四个命题:
①f(x)的值域是(-∞,0)∪(0,+∞);
②f(x)是奇函数;
③f(x)在(-∞,0)∪(0,+∞)上单调递增;
④方程|f(x)|=a总有四个不同的解,其中正确的是( )
A、仅②④
B、仅②③
C、仅①②
D、仅③④
已知函数f(x),当x,y∈R时恒有f(x+y)=f(x)+f(y).
(1)求证:f(x)是奇函数;
(2)若f(-3)=a,试用a表示f(24);
(3)若x>0时f(x)<0且f(1)=-
1
2
,试求f(x)在区间[-2,6]上的最大值与最小值.
下面对命题“函数f(x)=x+
1
x
是奇函数”的证明不是综合法的是( )
A.?x∈R且x≠0有f(-x)=(-x)+
1
-x
=-(x+
1
x
)=-f(x),∴f(x)是奇函数
B.?x∈R且x≠0有f(x)+f(-x)=x+
1
x
+(-x)+(-
1
x
)=0,∴f(x)=-f(-x),∴f(x)是奇函数
C.?x∈R且x≠0,∵f(x)≠0,∴
f(-x)
f(x)
=
-x-
1
x
x+
1
x
=-1,∴f(-x)=-f(x),∴f(x)是奇函数
D.取x=-1,f(-1)=-1+
1
-1
=-2,又f(1)=1+
1
1
=2
已知函数f(x)=log
a
(1+x),g(x)=log
a
(1+kx),其中a>0且a≠1.
(Ⅰ)当k=-2时,求函数h(x)=f(x)+g(x)的定义域;
(Ⅱ)若函数H(x)=f(x)-g(x)是奇函数(不为常函数),求实数k的值.
下面对命题“函数f(x)=x+
1
x
是奇函数”的证明不是综合法的是( )
A.?x∈R且x≠0有f(-x)=(-x)+
1
-x
=-(x+
1
x
)=-f(x),∴f(x)是奇函数
B.?x∈R且x≠0有f(x)+f(-x)=x+
1
x
+(-x)+(-
1
x
)=0,∴f(x)=-f(-x),∴f(x)是奇函数
C.?x∈R且x≠0,∵f(x)≠0,∴
f(-x)
f(x)
=
-x-
1
x
x+
1
x
=-1,∴f(-x)=-f(x),∴f(x)是奇函数
D.取x=-1,f(-1)=-1+
1
-1
=-2,又f(1)=1+
1
1
=2
关 闭
试题分类
高中
数学
英语
物理
化学
生物
地理
初中
数学
英语
物理
化学
生物
地理
小学
数学
英语
其他
阅读理解答案
已回答习题
未回答习题
题目汇总
试卷汇总
练习册解析答案