题目内容

如图是函数f(x)=x2+ax+b的部分图象,则函数g(x)=lnx+f′(x)的零点所在的区间是(  )
A.(
1
4
1
2
B.(1,2)C.(
1
2
,1)
D.(2,3)
精英家教网
由函数f(x)=x2+ax+b的部分图象得0<b<1,f(1)=0,从而-2<a<-1,
而g(x)=lnx+2x+a在定义域内单调递增,
g(
1
2
)=ln
1
2
+1+a<0,
g(1)=ln1+2+a=2+a>0,
∴函数g(x)=lnx+f′(x)的零点所在的区间是(
1
2
,1);
故选C.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网