题目内容
(文)在△ABC中,已知A=120°,且
=
,则sinC=( )
| AC |
| AB |
| 2 |
| 3 |
A.
| B.
| C.
| D.
|
∵
=
,A=120°,
∴设AC=2t,AB=3t,由余弦定理可得
BC2=AC2+AB2-2AB•ACcos120°
=(2t)2+(3t)2-2×2t×3t×(-
)=7t2,
∴BC=
t,由正弦定理
=
,可得:
sinC=
×sinA=
×
=
故选:C
| AC |
| AB |
| 2 |
| 3 |
∴设AC=2t,AB=3t,由余弦定理可得
BC2=AC2+AB2-2AB•ACcos120°
=(2t)2+(3t)2-2×2t×3t×(-
| 1 |
| 2 |
∴BC=
| 7 |
| BC |
| sinA |
| AB |
| sinC |
sinC=
| AB |
| BC |
| 3t | ||
|
| ||
| 2 |
3
| ||
| 14 |
故选:C
练习册系列答案
相关题目