题目内容
设二次函数f(x)=ax2-2ax+c在区间[0,1]上单调递减,且f(m)≤f(0),则实数m的取值范围是
- A.(-∞,0]
- B.[2,+∞)
- C.(-∞,0]∪[2,+∞)
- D.[0,2]
D
分析:利用二次函数的对称轴公式求出对称轴方程、得到f(0)=f(2)及二次函数的单调区间;利用单调性求出不等式的解集.
解答:∵f(x)的对称轴为x=1
∴f(0)=f(2)
∵在区间[0,1]上单调递减
∴f(x)在(-∞,1]递减;在[1,+∞)递增
∴0≤m≤2
故选D
点评:本题考查二次函数的单调性与对称轴及二次项的系数有关、考查利用二次函数的单调性解不等式.
分析:利用二次函数的对称轴公式求出对称轴方程、得到f(0)=f(2)及二次函数的单调区间;利用单调性求出不等式的解集.
解答:∵f(x)的对称轴为x=1
∴f(0)=f(2)
∵在区间[0,1]上单调递减
∴f(x)在(-∞,1]递减;在[1,+∞)递增
∴0≤m≤2
故选D
点评:本题考查二次函数的单调性与对称轴及二次项的系数有关、考查利用二次函数的单调性解不等式.
练习册系列答案
相关题目
设二次函数f(x)=ax2+bx+c(a>0),方程f(x)-x=0的两个根x1、x2满足0<x1<x2<
,且函数f(x)的图象关于直线x=x0对称,则有( )
| 1 |
| a |
A、x0≤
| ||
B、x0>
| ||
C、x0<
| ||
D、x0≥
|