题目内容
已知四棱锥P-ABCD,底面ABCD为矩形,侧棱PA⊥底面ABCD,其中BC=2AB=2PA=6,M,N为侧棱PC上的两个三等分点,如图所示,
(Ⅰ)求证:AN∥平面MBD;
(Ⅱ)求异面直线AN与PD所成角的余弦值;
(Ⅲ)求二面角M-BD-C的余弦值。
(Ⅰ)求证:AN∥平面MBD;
(Ⅱ)求异面直线AN与PD所成角的余弦值;
(Ⅲ)求二面角M-BD-C的余弦值。
|
(Ⅰ)证明:连接AC交BD于O,连接OM, |
|
|
(Ⅱ)解:如图所示,以A为原点,建立空间直角坐标系A-xyz, |
练习册系列答案
相关题目