题目内容
某种放射性物质不断变化为其他物质,每经过1年剩留的这种物质是原来的84%,画出这种物质的剩留量随时间变化的图象,并从图象上求出经过多少年,剩量留是原来的一半(结果保留1个有效数字).
解:通过恰当假设,将剩留量y表示成经过年数x的函数,并列表、描点、作图,进而求得所求.
设这种物质最初的质量是1,经过x年,剩留量是y.?
经过1年,剩留量y=1×84%=0.84;?
经过2年,剩留量y=1×84%×84%=0.71;
……
一般地,经过x年,剩留量y=0.84x.?
根据这个函数关系式可以列表如下:
|
用描点法画出指数函数y=0.84x的图象.从图上看出y=0.5只需x≈4.?
![]()
答:约经过4年,剩留量是原来的一半.
练习册系列答案
相关题目