题目内容
方程2tan (x-
)+1=0的解集为______.
| π |
| 3 |
若2tan (x-
)+1=0
则tan (x-
)=-
则x-
=-arctan
+kπ,k∈Z
故x=
-arctan
+kπ,k∈Z
故方程2tan (x-
)+1=0的解集为{x|x=
-arctan
+kπ,k∈Z}
故答案为:{x|x=
-arctan
+kπ,k∈Z}
| π |
| 3 |
则tan (x-
| π |
| 3 |
| 1 |
| 2 |
则x-
| π |
| 3 |
| 1 |
| 2 |
故x=
| π |
| 3 |
| 1 |
| 2 |
故方程2tan (x-
| π |
| 3 |
| π |
| 3 |
| 1 |
| 2 |
故答案为:{x|x=
| π |
| 3 |
| 1 |
| 2 |
练习册系列答案
相关题目