ÌâÄ¿ÄÚÈÝ
ÒÑÖªÍÖÔ²C£º| x2 |
| a2 |
| y2 |
| b2 |
| ||
| 3 |
£¨¢ñ£©ÇóÍÖÔ²CµÄ·½³Ì£»
£¨¢ò£©ÒÑÖªÒ»Ö±Ïßl¹ýÍÖÔ²CµÄÓÒ½¹µãF2£¬½»ÍÖÔ²ÓÚµãA¡¢B£®
£¨¢¡£©ÈôÂú×ã
| OA |
| OB |
| 2 |
| tan¡ÏAOB |
£¨¢¢£©µ±Ö±ÏßlÓëÁ½×ø±êÖá¶¼²»´¹Ö±Ê±£¬ÔÚxÖáÉÏÊÇ·ñ×Ü´æÔÚÒ»µãP£¬Ê¹µÃÖ±ÏßPA¡¢PBµÄÇãб½Ç»¥Îª²¹½Ç£¿Èô´æÔÚ£¬Çó³öP×ø±ê£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®
·ÖÎö£º£¨¢ñ£©Óɽ¹µã×ø±êµÃ³öc=1£¬½áºÏÀëÐÄÂʵóöa=
£¬Çó³öb Öµ£¬×îºóд³öÍÖÔ²CµÄ·½³Ì¼´¿É£»
£¨II£©£¨i£©ÓÉÌâÖÐÌõ¼þ£º¡°
•
=
¡±½áºÏÏòÁ¿µÄÊýÁ¿»ý£¬´úÈëÈý½ÇÐÎÃæ»ý¹«Ê½ÇóµÃ´ð°¸£®
£¨ii£©¶ÔÓÚ´æÔÚÐÔÎÊÌ⣬¿ÉÏȼÙÉè´æÔÚ£¬¼´¼ÙÉè´æÔÚÒ»µãP£¬Ê¹µÃÖ±ÏßPA¡¢PBµÄÇãб½Ç»¥Îª²¹½Ç£¬ÔÙÀûÓ÷½³ÌµÄ˼Ï룬Çó³ömµÄÖµ£¬Èô³öÏÖì¶Ü£¬Ôò˵Ã÷¼ÙÉè²»³ÉÁ¢£¬¼´²»´æÔÚ£»·ñÔò´æÔÚ£®
| 3 |
£¨II£©£¨i£©ÓÉÌâÖÐÌõ¼þ£º¡°
| OA |
| OB |
| 2 |
| tan¡ÏAOB |
£¨ii£©¶ÔÓÚ´æÔÚÐÔÎÊÌ⣬¿ÉÏȼÙÉè´æÔÚ£¬¼´¼ÙÉè´æÔÚÒ»µãP£¬Ê¹µÃÖ±ÏßPA¡¢PBµÄÇãб½Ç»¥Îª²¹½Ç£¬ÔÙÀûÓ÷½³ÌµÄ˼Ï룬Çó³ömµÄÖµ£¬Èô³öÏÖì¶Ü£¬Ôò˵Ã÷¼ÙÉè²»³ÉÁ¢£¬¼´²»´æÔÚ£»·ñÔò´æÔÚ£®
½â´ð£º½â£º£¨¢ñ£©c=1£¬ÓÖe=
=
£¬¡àa=
¡àb2=a2-c2=3-1=2
ËùÒÔ£¬ÍÖÔ²CµÄ·½³ÌÊÇ
+
=1
£¨¢ò£©£¨¢¡£©¡ß
•
=
£¬¡à|
|•|
|•cos¡ÏAOB=
£¬
¡à|
|•|
|•sin¡ÏAOB=2£¬¡àS¡÷AOB=
•|
|•|
|•sin¡ÏAOB=
¡Á2=1£®
£¨¢¢£©¼ÙÉè´æÔÚÒ»µãP£¬Ê¹µÃÖ±ÏßPA¡¢PBµÄÇãб½Ç»¥Îª²¹½Ç£¬
ÒÀÌâÒâ¿ÉÖªÖ±Ïßl¡¢PA¡¢PBбÂÊ´æÔÚÇÒ²»ÎªÁ㣮
²»·ÁÉèP£¨m£¬0£©£¬Ö±ÏßlµÄ·½³ÌΪy=k£¨x-1£©£¬k¡Ù0
ÓÉ
ÏûÈ¥yµÃ£¨3k2+2£©x2-6k2x+3k2-6=0
ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©Ôòx1+x2=
£¬x1•x2=
¡ßÖ±ÏßPA¡¢PBµÄÇãб½Ç»¥Îª²¹½Ç£¬
¡àkPA+kPB=0¶ÔÒ»ÇÐkºã³ÉÁ¢£¬¼´
+
=0¶ÔÒ»ÇÐkºã³ÉÁ¢
ÓÖy1=k£¨x1-1£©£¬y2=k£¨x2-1£©£¬
´úÈëÉÏʽ¿ÉµÃ2x1x2+2m-£¨m+1£©£¨x1+x2£©=0¶ÔÒ»ÇÐkºã³ÉÁ¢
¡à2¡Á
+2m-(m+1)¡Á
=0¶ÔÒ»ÇÐkºã³ÉÁ¢£¬
¼´2m-6=0£¬¡àm=3£¬
¡à´æÔÚP£¨3£¬0£©Ê¹µÃÖ±ÏßPA¡¢PBµÄÇãб½Ç»¥Îª²¹½Ç£®
| c |
| a |
| ||
| 3 |
| 3 |
¡àb2=a2-c2=3-1=2
ËùÒÔ£¬ÍÖÔ²CµÄ·½³ÌÊÇ
| x2 |
| 3 |
| y2 |
| 2 |
£¨¢ò£©£¨¢¡£©¡ß
| OA |
| OB |
| 2 |
| tan¡ÏAOB |
| OA |
| OB |
| 2 |
| tan¡ÏAOB |
¡à|
| OA |
| OB |
| 1 |
| 2 |
| OA |
| OB |
| 1 |
| 2 |
£¨¢¢£©¼ÙÉè´æÔÚÒ»µãP£¬Ê¹µÃÖ±ÏßPA¡¢PBµÄÇãб½Ç»¥Îª²¹½Ç£¬
ÒÀÌâÒâ¿ÉÖªÖ±Ïßl¡¢PA¡¢PBбÂÊ´æÔÚÇÒ²»ÎªÁ㣮
²»·ÁÉèP£¨m£¬0£©£¬Ö±ÏßlµÄ·½³ÌΪy=k£¨x-1£©£¬k¡Ù0
ÓÉ
|
ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©Ôòx1+x2=
| 6k2 |
| 3k2+2 |
| 3k2-6 |
| 3k2+2 |
¡ßÖ±ÏßPA¡¢PBµÄÇãб½Ç»¥Îª²¹½Ç£¬
¡àkPA+kPB=0¶ÔÒ»ÇÐkºã³ÉÁ¢£¬¼´
| y1 |
| x1-m |
| y2 |
| x2-m |
ÓÖy1=k£¨x1-1£©£¬y2=k£¨x2-1£©£¬
´úÈëÉÏʽ¿ÉµÃ2x1x2+2m-£¨m+1£©£¨x1+x2£©=0¶ÔÒ»ÇÐkºã³ÉÁ¢
¡à2¡Á
| 3k2-6 |
| 3k2+2 |
| 6k2 |
| 3k2+2 |
¼´2m-6=0£¬¡àm=3£¬
¡à´æÔÚP£¨3£¬0£©Ê¹µÃÖ±ÏßPA¡¢PBµÄÇãб½Ç»¥Îª²¹½Ç£®
µãÆÀ£º±¾Ð¡Ì⿼²éÍÖÔ²µÄ¼¸ºÎÐÔÖÊ¡¢Ö±ÏßÓëÍÖÔ²µÈ»ù´¡ÖªÊ¶£¬Í¬Ê±¿¼²é½âÎö¼¸ºÎµÄ»ù±¾Ë¼Ïë·½·¨ºÍ×ۺϽâÌâÄÜÁ¦£»×¢Ò⣨¢ó£©µÄ´¦Àí´æÔÚÐÔÎÊÌâµÄÒ»°ã·½·¨£¬Ê×ÏȼÙÉè´æÔÚ£¬½ø¶ø¸ù¾ÝÌâÒâ¡¢½áºÏÓйØÐÔÖÊ£¬»¯¼ò¡¢×ª»¯¡¢¼ÆË㣬×îºóµÃµ½½áÂÛ£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿