题目内容
【题目】对于函数f(x)=
,有下列5个结论: ①任取x1 , x2∈[0,+∞),都有|f(x1)﹣f(x2)|≤2;
②函数y=f(x)在区间[4,5]上单调递增;
③f(x)=2kf(x+2k)(k∈N+),对一切x∈[0,+∞)恒成立;
④函数y=f(x)﹣ln(x﹣1)有3个零点;
⑤若关于x的方程f(x)=m(m<0)有且只有两个不同实根x1 , x2 , 则x1+x2=3.
则其中所有正确结论的序号是 . (请写出全部正确结论的序号)
【答案】①④⑤
【解析】解:f(x)=
的图象如图所示:①∵f(x)的最大值为1,最小值为﹣1, ∴任取x1、x2∈[0,+∞),都有|f(x1)﹣f(x2)|≤2恒成立,故①正确;②函数在区间[4,5]上的单调性和[0,1]上的单调性相同,则函数y=f(x)在区间[4,5]上不单调;故②错误;③f(
)=2f(
+2)=4f(
+4)=6f(
+6)≠8f(
+8),故不正确;故③错误,④如图所示,函数y=f(x)﹣ln(x﹣1)有3个零点;故④正确,⑤当1≤x≤2时,函数f(x)关于x=
对称,若关于x的方程f(x)=m(m<0)有且只有两个不同实根x1 , x2 ,
则
=
,则x1+x2=3成立,故⑤正确,
故答案为:①④⑤.![]()
作出f(x)=
的图象,分别利用函数的性质进行判断即可.
【题目】某校为了解校园安全教育系列活动的成效,对全校学生进行了一次安全意识测试,根据测试成绩评定“合格”、“不合格”两个等级,同时对相应等级进行量化:“合格”记5分,“不合格”记0分.现随机抽取部分学生的答卷,统计结果及对应的频率分布直方图如图所示:
等级 | 不合格 | 合格 | ||
得分 |
|
|
|
|
频数 | 6 |
| 24 |
|
![]()
(Ⅰ)求
,
,
的值;
(Ⅱ)用分层抽样的方法,从评定等级为“合格”和“不合格”的学生中随机抽取10人进行座谈.现再从这10人这任选4人,记所选4人的量化总分为
,求
的分布列及数学期望
;
(Ⅲ)某评估机构以指标
(
,其中
表示
的方差)来评估该校安全教育活动的成效.若
,则认定教育活动是有效的;否则认定教育活动无效,应调整安全教育方案.在(Ⅱ)的条件下,判断该校是否应调整安全教育方案?