ÌâÄ¿ÄÚÈÝ
É躯Êýf(x)µÄ¶¨ÒåÓò¡¢ÖµÓò¾ùΪR£¬f(x)µÄ·´º¯ÊýΪf-1(x)£¬ÇÒ¶ÔÈÎÒâʵÊýx£¬¾ùÓÐf(x)+f-1(x)£¼(1)ÇóÖ¤:an+1 +an-1£¼
aN(N=1,2¡).
(2)ÉèbN=an+1-2aN,N=0,1,2,¡.ÇóÖ¤: bN£¼(-6)(
)n(N¡ÊN*).
(3)ÊÇ·ñ´æÔÚ³£ÊýAºÍB,ͬʱÂú×ã:
¢Ùµ±N=0¼°N=1ʱ,ÓÐan=
³ÉÁ¢£»
¢Úµ±N=2£¬3¡Ê±£¬ÓÐan£¼
³ÉÁ¢.
Èç¹û´æÔÚÂú×ãÉÏÊöÌõ¼þµÄʵÊýA¡¢B£¬Çó³öA¡¢BµÄÖµ£»Èç¹û²»´æÔÚ£¬Ö¤Ã÷ÄãµÄ½áÂÛ.
Ö¤Ã÷£º(1) ¡ßf(x)+f-1(x)£¼
x,Áîx=an,¡àf(an)+ f-1(an)£¼
an,
¼´an+1£«an-1£¼
an.(2)Ö¤Ã÷£º¡ßan+1£¼
an-an-1,¡àan+1-2an£¼
(an-2an-1),¼´bn£¼
bn-1.
¡ßb0=a1
)nb0=(-6)(
)n(n¡ÊN*).
(3)½â:ÓÉ(2)¿ÉÖªan+1£¼2an+(-6)(
)n.
¼ÙÉè´æÔÚ³£ÊýAºÍB£¬Ê¹µÃan=
¶Ôn=0,1³ÉÁ¢£¬Ôò
½âµÃA=B=4.
ÏÂÃæÓÃÊý×Ö¹éÄÉ·¨Ö¤Ã÷an=
¶ÔÒ»ÇÐn¡Ý2,n¡ÊN³ÉÁ¢.
¢Ùµ±n=2ʱ£¬ÓÉan+1+an-1£¼
anµÃa2£¼
a1-a0=
¡Á10-8=17=
.
¡àn=2ʱ£¬an£¼
³ÉÁ¢.
¢Ú¼ÙÉèn=k(k¡Ý2)ʱ£¬²»µÈʽ³ÉÁ¢£¬¼´ak£¼
,
Ôòak+1£¼2ak+(-6)(
)k£¼2¡Á
+(-6)(
)k=
.
Õâ˵Ã÷n=k+1ʱ£¬²»µÈʽ³ÉÁ¢.
×ۺϢ٢ڣ¬¿ÉÖªan£¼
¶ÔÒ»ÇÐn¡Ý2,n¡ÊN³ÉÁ¢.
¡àA=B=4Âú×ãÌâÉè.