题目内容
设定义在(0,+∞)上的函数f(x)满足;对任意a,b∈(0,+∞),都有f(b)=f(a)-f(
),且当x>1时,f(x)>0.
(1)求f(1)的值;
(2)判断并证明函数f(x)的单调性;
(3)如果f(3)=1,解不等式f(x)-f(
)>2.
| a |
| b |
(1)求f(1)的值;
(2)判断并证明函数f(x)的单调性;
(3)如果f(3)=1,解不等式f(x)-f(
| 1 |
| x-8 |
(1)取a=b=1,得f(1)=f(1)-f(1)=0,所以f(1)=0.
(2)函数在(0,+∞)上是单调增函数.
任取x1,x2∈(0,+∞),设x1<x2,则f(x2)-f(x1)=f(
),因为0<x1<x2,所以
>1,又当x>1时,有f(x)>0,所以f(x2)-f(x1)=f(
)>0,即f(x2)>f(x1).所以f(x)在(0,+∞)上是单调增函数.
(3)若f(3)=1,则2=1+1=f(3)+f(3)=f(9),f(x)-f(
)=f(x(x-8)),则不等式f(x)-f(
)>2可以化为f(x(x-8))>f(9),即
,解得x>9.即不等式的解集为(9,+∞).
(2)函数在(0,+∞)上是单调增函数.
任取x1,x2∈(0,+∞),设x1<x2,则f(x2)-f(x1)=f(
| x2 |
| x1 |
| x2 |
| x1 |
| x2 |
| x1 |
(3)若f(3)=1,则2=1+1=f(3)+f(3)=f(9),f(x)-f(
| 1 |
| x-8 |
| 1 |
| x-8 |
|
练习册系列答案
相关题目