题目内容
设f(x)=x2-2ax+2(a∈R),g(x)=lgf(x)
(1)当x∈R时,f(x)≥a恒成立,求a的取值范围;
(2)若g(x)的值域为R,求a的取值范围;
(3)当x∈[-1,+∞)时,f(x)≥a恒成立,求a的取值范围.
(1)当x∈R时,f(x)≥a恒成立,求a的取值范围;
(2)若g(x)的值域为R,求a的取值范围;
(3)当x∈[-1,+∞)时,f(x)≥a恒成立,求a的取值范围.
(1)∵x∈R时,有x2-2ax+2-a≥0恒成立,
须△=4a2-4(2-a)≤0,即a2+a-2≤0,所以-2≤a≤1.
a的取值范围-2≤a≤1;
(2)若函数的值域为R,则x2-2ax+2=(x-a)2+2-a2
∴2-a2≤0,∴a≥
或a≤-
.
(3)f(x)=x2-2ax+2=(x-a)2+2-a2
f(x)图象的对称轴为x=a
为使f(x)≥a在[-1,+∞)上恒成立,
只需f(x)在[-1,?+∞)上的最小值比a大或等于a即可
∴①a≤-1时,f(-1)最小,解,解得-3≤a≤-1
②a≥-1时,f(a)最小,解
解得-1≤a≤1
综上所述,a的取值范围是:3≤a≤1.
须△=4a2-4(2-a)≤0,即a2+a-2≤0,所以-2≤a≤1.
a的取值范围-2≤a≤1;
(2)若函数的值域为R,则x2-2ax+2=(x-a)2+2-a2
∴2-a2≤0,∴a≥
| 2 |
| 2 |
(3)f(x)=x2-2ax+2=(x-a)2+2-a2
f(x)图象的对称轴为x=a
为使f(x)≥a在[-1,+∞)上恒成立,
只需f(x)在[-1,?+∞)上的最小值比a大或等于a即可
∴①a≤-1时,f(-1)最小,解,解得-3≤a≤-1
②a≥-1时,f(a)最小,解
|
解得-1≤a≤1
综上所述,a的取值范围是:3≤a≤1.
练习册系列答案
相关题目