题目内容

设f(x)=x2-2ax+2(a∈R),g(x)=lgf(x)
(1)当x∈R时,f(x)≥a恒成立,求a的取值范围;
(2)若g(x)的值域为R,求a的取值范围;
(3)当x∈[-1,+∞)时,f(x)≥a恒成立,求a的取值范围.
(1)∵x∈R时,有x2-2ax+2-a≥0恒成立,
须△=4a2-4(2-a)≤0,即a2+a-2≤0,所以-2≤a≤1.
a的取值范围-2≤a≤1;
(2)若函数的值域为R,则x2-2ax+2=(x-a)2+2-a2
∴2-a2≤0,∴a≥
2
或a≤-
2

(3)f(x)=x2-2ax+2=(x-a)2+2-a2
f(x)图象的对称轴为x=a
为使f(x)≥a在[-1,+∞)上恒成立,
只需f(x)在[-1,?+∞)上的最小值比a大或等于a即可
∴①a≤-1时,f(-1)最小,解,解得-3≤a≤-1
  ②a≥-1时,f(a)最小,解
a≥-1
f(a)=2-a2≥a

解得-1≤a≤1
综上所述,a的取值范围是:3≤a≤1.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网