题目内容

22、如图,⊙O内切于△ABC的边于D,E,F,AB=AC,连接AD交⊙O于点H,直线HF交BC的延长线于点G.
(1)求证:圆心O在直线AD上.
(2)求证:点C是线段GD的中点.
分析:切线PA和PB,切点分别是A和B根据切线的性质和圆周角定理,四边形内角和是360度即可求得劣弧AB的度数.
解答:证明:(1)∵AB=AC,AF=AE
∴CD=BE
又∵CF=CD,BD=BE
∴CD=BD
又∵△ABC是等腰三角形,
∴AD是∠CAB的角分线
∴圆心O在直线AD上.(5分)
(II)连接DF,由(I)知,DH是⊙O的直径,
∴∠DHF=90°,∴∠FDH+∠FHD=90°
又∵∠G+∠FHD=90°
∴∠FDH=∠G
∵⊙O与AC相切于点F
∴∠AFH=∠GFC=∠FDH
∴∠GFC=∠G
∴CG=CF=CD
∴点C是线段GD的中点.(10分)
点评:本题利用了切线的性质,四边形的内角和为360度及圆周角定理求解.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网