题目内容
若数列{an}的前n项和Sn是(1+x)n二项展开式中各项系数的和(n=1,2,3,…).(Ⅰ)求{an}的通项公式;
(Ⅱ)若数列{bn}满足b1=-1,bn+1=bn+(2n-1),且cn=
| an•bn | n |
分析:(Ⅰ)由题意Sn=2n,由项与前n项和的关系an=
得{an}的通项公式;
(Ⅱ)由bn+1=bn+(2n-1)得bn+1-bn=2n-1,令n=1、2、3、…n-1得n-1个式子,以上各式相加得bn-b1=1+3+5+…+(2n-3),可求bn=n2-2n,进而求cn,由错位相减法得数列{cn}的通项及其前n项和Tn.
|
(Ⅱ)由bn+1=bn+(2n-1)得bn+1-bn=2n-1,令n=1、2、3、…n-1得n-1个式子,以上各式相加得bn-b1=1+3+5+…+(2n-3),可求bn=n2-2n,进而求cn,由错位相减法得数列{cn}的通项及其前n项和Tn.
解答:解:(Ⅰ)由题意Sn=2n,Sn-1=2n-1(n≥2),
两式相减得an=2n-2n-1=2n-1(n≥2).
当n=1时,a1=S1=2,
∴an=
.
(Ⅱ)∵bn+1=bn+(2n-1),
∴bn-bn-1=2n-3
bn-1-bn-2=2n-5
…
b4-b3=5
b3-b2=3
b2-b1=1,
以上各式相加得bn-b1=1+3+5+…+(2n-3)
=
=(n-1)2
∵b1=-1,∴bn=n2-2n.
∴cn=
.
∴Tn=-2+0×21+1×22+2×23+…+(n-2)×2n-1,
∴2Tn=-4+0×22+1×23+2×24+…+(n-2)×2n.
∴-Tn=2+22+23+…+2n-1-(n-2)×2n
=
-(n-2)×2n
=2n-2-(n-2)×2n=-2-(n-3)×2n.
∴Tn=2+(n-3)×2n.
两式相减得an=2n-2n-1=2n-1(n≥2).
当n=1时,a1=S1=2,
∴an=
|
(Ⅱ)∵bn+1=bn+(2n-1),
∴bn-bn-1=2n-3
bn-1-bn-2=2n-5
…
b4-b3=5
b3-b2=3
b2-b1=1,
以上各式相加得bn-b1=1+3+5+…+(2n-3)
=
| (n-1)(1+2n+3) |
| 2 |
∵b1=-1,∴bn=n2-2n.
∴cn=
|
∴Tn=-2+0×21+1×22+2×23+…+(n-2)×2n-1,
∴2Tn=-4+0×22+1×23+2×24+…+(n-2)×2n.
∴-Tn=2+22+23+…+2n-1-(n-2)×2n
=
| 2(1-2n-1) |
| 1-2 |
=2n-2-(n-2)×2n=-2-(n-3)×2n.
∴Tn=2+(n-3)×2n.
点评:应用项与前n项和之间的关系时,注意n=1的时候;求通项公式,若两项之差为n的一次式,可用累加法;用错位相减法求数列的前n项和,用时要观察项的特征,是否是等差数列的项与等比数列的项的乘积.
练习册系列答案
相关题目