题目内容
(2012•安徽模拟)已知数列{an}的前n项和为Sn,a2=3,2Sn-nan-n=0(n∈N*))
(1)求数列{an}的通项公式;
(2)记Tn=(1+
)(1+
)…(1+
),求证:当n∈N*时,Tn>
.
(1)求数列{an}的通项公式;
(2)记Tn=(1+
| 1 |
| a1 |
| 1 |
| a2 |
| 1 |
| an |
| 2n+1 |
分析:(1)根据2Sn-nan-n=0,再写一式,两式相减可得nan-(n-1)an+1=1,当n=1时,a1=1;当n≥2时,两边同除以n(n-1)得
-
=
-
,利用叠加法即可确定数列的通项;
(2)用分析法证明不等式,由(1)知,Tn=(1+
)(1+
)…(1+
)=
×
×…
,从而不等式Tn>
等价于
×
×…
>
,即证明(
×
×…
)2>2n+1,利用
>
=
可得结论.
| an+1 |
| n |
| an |
| n-1 |
| 1 |
| n |
| 1 |
| n-1 |
(2)用分析法证明不等式,由(1)知,Tn=(1+
| 1 |
| a1 |
| 1 |
| a2 |
| 1 |
| an |
| 2 |
| 1 |
| 4 |
| 3 |
| 2n |
| 2n-1 |
| 2n+1 |
| 2 |
| 1 |
| 4 |
| 3 |
| 2n |
| 2n-1 |
| 2n+1 |
| 2 |
| 1 |
| 4 |
| 3 |
| 2n |
| 2n-1 |
| 2k |
| 2k-1 |
| 2k+1 |
| (2k-1)+1 |
| 2k+1 |
| 2k |
解答:解:(1)∵2Sn-nan-n=0,2Sn+1-(n+1)an+1-(n+1)=0
两式相减得2an+1-(n+1)an+1+nan-1=0=1
∴nan-(n-1)an+1=1
当n=1时,a1=1;
当n≥2时,两边同除以n(n-1)得
-
=
-
∴利用叠加法可得
-a2=
-1
∴
=
+2=
∴n≥2时,an=2n-1,当n=1时,也成立
∴an=2n-1;
(2)由(1)知,Tn=(1+
)(1+
)…(1+
)=
×
×…
从而不等式Tn>
等价于
×
×…
>
即证明(
×
×…
)2>2n+1
又∵
>
=
∴(
)2>
•
,(
)2>
•
,…,(
)2>
•
∴(
×
×…
)2>2n+1
即有
×
×…
>
故Tn>
成立
两式相减得2an+1-(n+1)an+1+nan-1=0=1
∴nan-(n-1)an+1=1
当n=1时,a1=1;
当n≥2时,两边同除以n(n-1)得
| an+1 |
| n |
| an |
| n-1 |
| 1 |
| n |
| 1 |
| n-1 |
∴利用叠加法可得
| an |
| n-1 |
| 1 |
| n-1 |
∴
| an |
| n-1 |
| 1 |
| n-1 |
| 2n-1 |
| n-1 |
∴n≥2时,an=2n-1,当n=1时,也成立
∴an=2n-1;
(2)由(1)知,Tn=(1+
| 1 |
| a1 |
| 1 |
| a2 |
| 1 |
| an |
| 2 |
| 1 |
| 4 |
| 3 |
| 2n |
| 2n-1 |
从而不等式Tn>
| 2n+1 |
| 2 |
| 1 |
| 4 |
| 3 |
| 2n |
| 2n-1 |
| 2n+1 |
即证明(
| 2 |
| 1 |
| 4 |
| 3 |
| 2n |
| 2n-1 |
又∵
| 2k |
| 2k-1 |
| 2k+1 |
| (2k-1)+1 |
| 2k+1 |
| 2k |
∴(
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 2 |
| 4 |
| 3 |
| 4 |
| 3 |
| 5 |
| 4 |
| 2n |
| 2n-1 |
| 2n |
| 2n-1 |
| 2n+1 |
| 2n |
∴(
| 2 |
| 1 |
| 4 |
| 3 |
| 2n |
| 2n-1 |
即有
| 2 |
| 1 |
| 4 |
| 3 |
| 2n |
| 2n-1 |
| 2n+1 |
故Tn>
| 2n+1 |
点评:本题考查数列的通项,考查不等式的证明,解题的关键是利用叠加法求数列的通项,利用放缩法证明不等式.
练习册系列答案
相关题目