题目内容

已知数列{an}中,a1=
5
6
,若以a1,a2,…,an为系数的二次方程an-1x2-anx+1=0(n∈N+,n≥2)都有根α,β且3α-αβ+3β=1,则{an}的前n项和Sn=______.
由题意,∵α+β=
an
an-1
,αβ=
1
an-1
代入3α-αβ+3β=1得an=
1
3
an-1+
1
3

an-
1
2
an-1-
1
2
=
1
3
an-1+
1
3
-
1
2
an-1-
1
2
=
1
3
为定值.
∴数列{an-
1
2
}是等比数列.
∵a1-
1
2
=
5
6
-
1
2
=
1
3

∴an-
1
2
=
1
3
×(
1
3
n-1=(
1
3
n
∴an=(
1
3
n+
1
2

∴Sn=(
1
3
+
1
32
++
1
3n
)+
n
2
=
1
3
(1-
1
3n
)
1-
1
3
+
n
2
=
n+1
2
-
1
3n

故答案为:Sn=
n+1
2
-
1
3n
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网