题目内容
【题目】如图,在三棱锥P-ABC中,
底面ABC,
.点D,E,N分别为棱PA,PC,BC的中点,M是线段AD的中点,
,
.
![]()
(1)求证:
平面BDE;
(2)求二面角C-EM-N的正弦值.
(3)已知点H在棱PA上,且直线NH与直线BE所成角的余弦值为
,求线段AH的长.
【答案】(1)见解析(2)
;(3)AH的长为4.
【解析】
(1)利用面面平行的判定定理证明平面
平面BDE,再由面面平行的性质定理得出
平面BDE;
(2)建立空间直角坐标系,利用向量法求解即可;
(3)建立空间直角坐标系,设出点
的坐标,利用向量法求解即可得出线段AH的长.
(1)取AB中点F,连接MF,NF,
![]()
因为M为AD中点,
所以
,
因为
平面BDE,
平面BDE,
所以
平面BDE.
因为N为BC中点
所以
,
又D,E分别为AP,PC的中点,
所以
,则
.
因为
平面BDE,
平面BDE,
所以
平面BDE.
又
,
平面![]()
所以平面
平面BDE
![]()
平面![]()
则
平面BDE;
(2)因为
底面ABC,
.
所以以A为原点,分别以AB,AC,AP所在直线为x,y,z轴建立空间直角坐标系
![]()
因为
,
,
所以
,
,
,
,
,
,
则
,
,
设平面MEN的一个法向量为
,
由
,得
,
取
,得
.
由图可得平面CME的一个法向量为
.
所以
.
所以二面角C-EM-N的余弦值为
,则正弦值为
;
(3)设
,则
,
,
.
因为直线MH与直线BE所成角的余弦值为
,
所以
,
解得:
.
所以当H与P重合时直线NH与直线BE所成角的余弦值为
,此时线段AH的长为4.
练习册系列答案
相关题目