题目内容

已知椭圆(a>b>0)抛物线,从每条曲线上取两个点,将其坐标记录于下表中:



4

1

2
4

2
(1)求的标准方程;(2)四边形ABCD的顶点在椭圆上,且对角线AC、BD过原点O,若,

(i) 求的最值.
(ii) 求四边形ABCD的面积;


(2)当k=0(此时满足①式),即直线AB平行于x轴时,的最小值为-2.
又直线AB的斜率不存在时,所以的最大值为2.
(ii).

解析试题分析:
利用待定系数法,将点(0,2),()代入椭圆方程,将(4,4),(1,2)代入抛物线方程,可得 
(2)设直线AB的方程为,设
联立,得 
  ①
                  
   

=      
   
 

当k=0(此时满足①式),即直线AB平行于x轴时,的最小值为-2.
又直线AB的斜率不存在时,所以的最大值为2.  11分
(ii)设原点到直线AB的距离为d,则

.   13分
考点:待定系数法,平面向量的坐标运算,椭圆、抛物线的标准方程,直线与椭圆的位置关系。
点评:中档题,曲线关系问题,往往通过联立方程组,得到一元二次方程,运用韦达定理。本题求椭圆、抛物线的标准方程,主要运用了待定系数法。作为研究图形的面积,涉及弦长公式的应用,利用韦达定理,简化了计算过程。

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网