题目内容
(2010•九江二模)已知数列{an}满足:①{
}是公差为1的等差数列;②an+1=
an+1.(n∈N+)
(1)求数列{an}的通项公式an;(2)设Cn=
(n≥2),求证:C1+C2+C3+…+Cn<6.
| an |
| n |
| n+2 |
| n |
(1)求数列{an}的通项公式an;(2)设Cn=
2
| ||
| an |
分析:(1)解法一:由条件
解得a1=1,a2=4,求出{
}首项,利用等差数列通项公式求出{
}通项后,再求数列{an}的通项公式an;
解法二:由an+1=
an+1+1得
=
•
+
,转化构造出
+
=1从而an=n2
(2)Cn=
=
=
<
=
裂项后相加求和,再与6比较.
|
| an |
| n |
| an |
| n |
解法二:由an+1=
| n+2 |
| n |
| an+1 |
| n+1 |
| n+2 |
| n+1 |
| an |
| n |
| 1 |
| n+1 |
| an |
| n(n+1) |
| 1 |
| n+1 |
(2)Cn=
2
| ||
| n2 |
| 2 | ||
n
|
| 4 | ||||
n
|
| 4 | ||||
(n-1)
|
| 4 | ||||||
|
解答:解:(1)解法一:由条件
解得a1=1,a2=4…(3分)
又{
}是公差为1的等差数列,
∴
=1+(n-1)•1∴an=n2…(6分)
解法二:由an+1=
an+1+1得
=
•
+
,
即
-
=
+
…(3分)
又{
}是公差为1的等差数列,即
-
=1
∴
+
=1从而an=n2…(6分)
(2)Cn=
=
=
<
=
∴n≥2时,Cn<
=4(
-
)…(9分)
∴C1+C2+C3+…+Cn<C1+4[(1-
)+(
-
)+…+(
-
)]=2+4(1-
)<6…(12分)
|
又{
| an |
| n |
∴
| an |
| n |
解法二:由an+1=
| n+2 |
| n |
| an+1 |
| n+1 |
| n+2 |
| n+1 |
| an |
| n |
| 1 |
| n+1 |
即
| an+1 |
| n+1 |
| an |
| n |
| an |
| n(n+1) |
| 1 |
| n+1 |
又{
| an |
| n |
| an+1 |
| n+1 |
| an |
| n |
∴
| an |
| n(n+1) |
| 1 |
| n+1 |
(2)Cn=
2
| ||
| n2 |
| 2 | ||
n
|
| 4 | ||||
n
|
| 4 | ||||
(n-1)
|
| 4 | ||||||
|
∴n≥2时,Cn<
4(
| ||||
|
| 1 | ||
|
| 1 | ||
|
∴C1+C2+C3+…+Cn<C1+4[(1-
| 1 | ||
|
| 1 | ||
|
| 1 | ||
|
| 1 | ||
|
| 1 | ||
|
| 1 | ||
|
点评:本题考查了数列通项公式求解,裂项法求和.要求具有转化、变形构造、计算的能力.
练习册系列答案
相关题目