题目内容
| A、5 | ||
| B、4 | ||
C、4
| ||
D、2
|
考点:点、线、面间的距离计算
专题:空间位置关系与距离
分析:以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,当E、F分别是AB、C1D1上的中点,P为正方形A1B1C1D1时,PE取最小值,由此能求出结果.
解答:
解:以D为原点,DA为x轴,DC为y轴,DD1为z轴,
建立空间直角坐标系,
设AE=a,D1F=b,0≤a≤4,0≤b≤4,P(x,y,4),0≤x≤4,0≤y≤4,
则F(0,b,4),E(4,a,0),
=(-x,b-y,0),
∵点P到点F的距离等于点P到平面ABB1A1的距离,
∴当E、F分别是AB、C1D1上的中点,P为正方形A1B1C1D1时,
PE取最小值,
此时,P(2,2,4),E(4,2,0),
∴|PE|min=
=2
.
故选:D.
建立空间直角坐标系,
设AE=a,D1F=b,0≤a≤4,0≤b≤4,P(x,y,4),0≤x≤4,0≤y≤4,
则F(0,b,4),E(4,a,0),
| PF |
∵点P到点F的距离等于点P到平面ABB1A1的距离,
∴当E、F分别是AB、C1D1上的中点,P为正方形A1B1C1D1时,
PE取最小值,
此时,P(2,2,4),E(4,2,0),
∴|PE|min=
| (2-4)2+(2-2)2+(4-0)2 |
| 5 |
故选:D.
点评:本题考查空间直线与平面的位置关系、空间向量的运算等基础知识,考查运算求解能力和推理论证能力、空间想象能力,考查数形结合、转化与化归等数学思想方法及创新意识.
练习册系列答案
相关题目
设{an}是由正数组成的等比数列,Sn为其前n项和,已知a2a4=81,S3=13,则S5等于( )
| A、40 | B、81 |
| C、121 | D、243 |
已知α为锐角,且cos(α+
)=
,则sinα为( )
| π |
| 6 |
| 3 |
| 5 |
A、
| ||||
B、-
| ||||
C、
| ||||
D、
|