题目内容

如图,已知正方体ABCD-A1B1C1D1的棱长为4,点E,F分别是线段AB,C1D1上的动点,点P是上底面A1B1C1D1内一动点,且满足点P到点F的距离等于点P到平面ABB1A1的距离,则当点P运动时,PE的最小值是(  )
A、5
B、4
C、4
2
D、2
5
考点:点、线、面间的距离计算
专题:空间位置关系与距离
分析:以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,当E、F分别是AB、C1D1上的中点,P为正方形A1B1C1D1时,PE取最小值,由此能求出结果.
解答: 解:以D为原点,DA为x轴,DC为y轴,DD1为z轴,
建立空间直角坐标系,
设AE=a,D1F=b,0≤a≤4,0≤b≤4,P(x,y,4),0≤x≤4,0≤y≤4,
则F(0,b,4),E(4,a,0),
PF
=(-x,b-y,0),
∵点P到点F的距离等于点P到平面ABB1A1的距离,
∴当E、F分别是AB、C1D1上的中点,P为正方形A1B1C1D1时,
PE取最小值,
此时,P(2,2,4),E(4,2,0),
∴|PE|min=
(2-4)2+(2-2)2+(4-0)2
=2
5

故选:D.
点评:本题考查空间直线与平面的位置关系、空间向量的运算等基础知识,考查运算求解能力和推理论证能力、空间想象能力,考查数形结合、转化与化归等数学思想方法及创新意识.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网