题目内容

已知集合A={x|x2-
3
2
x-k=0,x∈(-1,1)}
,若集合A有且仅有一个元素,则实数k的取值范围是(  )
A.(-
1
2
5
2
)∪{-
9
16
}
B.(
1
2
5
2
)
C.[-
9
16
5
2
)
D.[-
9
16
,+∞)
集合A={x|x2-
3
2
x-k=0,x∈(-1,1)}
,若集合A有且仅有一个元素,
x2-
3
2
x-k=0,x∈(-1,1)
仅有一个根,或△=0.
∴f(-1)f(1)=(1+
3
2
-k
)(1-
3
2
-k
)<0,或△=0,
(k-
5
2
)(k+
1
2
)<0
得k∈(-
1
2
5
2
)

解△=0,即(-
3
2
)2+4k=0
,k=-
9
16
,此时x=
3
4
∈(-1,1).
综上k∈(-
1
2
5
2
)∪{-
9
16
}

故选:A.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网