题目内容
| AM |
| MC |
| MP |
| PB |
| AB |
| AC |
| AP |
| BC |
分析:利用向量的三角形法则和已知向量共线的条件即可得到
=
+
,再利用向量的运算法则和数量积即可得出
•
=(
+
)•(
-
).
| AP |
| 2 |
| 3 |
| AB |
| 2 |
| 9 |
| AC |
| AP |
| BC |
| 2 |
| 3 |
| AB |
| 2 |
| 9 |
| AC |
| AC |
| AB |
解答:解:∵
=
+
=
+
=
+
(
+
)
=
+
,
∴
•
=(
+
)•(
-
)
=
2-
2+
•
=
×32-
×22+
×3×2×cos90°
═-
.
故选A.
| AP |
| AB |
| BP |
| AB |
| 1 |
| 3 |
| BM |
| AB |
| 1 |
| 3 |
| BA |
| 2 |
| 3 |
| AC |
=
| 2 |
| 3 |
| AB |
| 2 |
| 9 |
| AC |
∴
| AP |
| BC |
| 2 |
| 3 |
| AB |
| 2 |
| 9 |
| AC |
| AC |
| AB |
=
| 2 |
| 9 |
| AC |
| 2 |
| 3 |
| AB |
| 4 |
| 9 |
| AC |
| AB |
=
| 2 |
| 9 |
| 2 |
| 3 |
| 4 |
| 9 |
═-
| 2 |
| 3 |
故选A.
点评:熟练掌握向量的三角形法则、向量共线定理、数量积运算是解题的关键.
练习册系列答案
相关题目