题目内容

已知向量
a
=(cos
3x
2
,sin
3x
2
)
b
=(cos
x
2
,-sin
x
2
)
x∈[-
π
3
π
2
]

(1)求证:(
a
-
b
)
(
a
+
b
)

(2)|
a
+
b
|=
1
3
,求cosx的值.
分析:(1)先求出
a
2
和 
b
2
,计算(
a
-
b
)•(
a
+
b
)的值.
(2)由 |
a
+
b
|=
1
3
,化简可求出cos2x的值,可求出 cos2x=
1
36
,再根据x的范围,求出cosx的值.
解答:解:(1)∵
a
=(cos
3x
2
,sin
3x
2
)
b
=(cos
x
2
,-sin
x
2
)

a
2
=cos2
3x
2
+sin2
3x
2
=1
b
2
=cos2
x
2
+sin2
x
2
=1

(
a
-
b
)•(
a
+
b
)=
a
2
-
b
2
=0

(
a
-
b
)
(
a
+
b
)


(2)∵|
a
+
b
|=
(
a
+
b
)
2
=
a
2
+2
a
b
+
b
2

=
1+2(cos
3x
2
•cos
x
2
+sin
3x
2
•sin
x
2
)+1

=
2+2cos2x

=
1
3

∴2+2cos2x=
1
9
,即cos2x=-
17
18

2cos2x-1=-
17
18

cos2x=
1
36

x∈[-
π
3
π
2
]

cosx=
1
6
点评:本题考查同角三角函数的基本关系,二倍角的余弦公式的应用,两个向量的数量积、向量的模的求法.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网