题目内容
18.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左、右焦点分别为F1、F2,过点F1且垂直于x轴的直线与该双曲线的左支交于A、B两点,AF2、BF2分别交y轴于P、Q两点,若△PQF2的周长为12,则ab取得最大值时该双曲线的离心率为( )| A. | $\sqrt{2}$ | B. | $\sqrt{3}$ | C. | 2$\sqrt{2}$ | D. | $\frac{2\sqrt{3}}{3}$ |
分析 由题意,△ABF2的周长为24,利用双曲线的定义,可得$\frac{4{b}^{2}}{a}$=24-4a,进而转化,利用导数的方法,即可得出结论.
解答 解:由题意,△ABF2的周长为24,
∵|AF2|+|BF2|+|AB|=24,
∵|AF2|+|BF2|-|AB|=4a,|AB|=$\frac{2{b}^{2}}{a}$,
∴$\frac{4{b}^{2}}{a}$=24-4a,∴b2=a(6-a),
∴y=a2b2=a3(6-a),∴y′=2a2(9-2a),
0<a<4.5,y′>0,a>4.5,y′<0,
∴a=4.5时,y=a2b2取得最大值,此时ab取得最大值,b=$\frac{3\sqrt{3}}{2}$,
∴c=3$\sqrt{3}$,
∴e=$\frac{c}{a}$=$\frac{2\sqrt{3}}{3}$,
故选:D.
点评 本题考查双曲线的定义,考查导数知识的运用,考查学生分析解决问题的能力,知识综合性强.
练习册系列答案
相关题目
7.某公司有A,B,C,D,E五辆汽车,其中A、B两辆汽车的车牌尾号均为1,C、D两辆汽车的车牌尾号均为2,E车的车牌尾号为6,已知在非限行日,每辆车可能出车或不出车,A、B、E三辆汽车每天出车的概率均为$\frac{1}{2}$,C、D两辆汽车每天出车的概率均为$\frac{2}{3}$,且五辆汽车是否出车相互独立,该公司所在地区汽车限行规定如下:
(1)求该公司在星期一至少有2辆汽车出车的概率;
(2)设X表示该公司在星期二和星期三两天出车的车辆数之和,求X的分布列及数学期望.
| 车牌尾号 | 0和5 | 1和6 | 2和7 | 3和8 | 4和9 |
| 限行日 | 星期一 | 星期二 | 星期三 | 星期四 | 星期五 |
(2)设X表示该公司在星期二和星期三两天出车的车辆数之和,求X的分布列及数学期望.
9.已知双曲线$\frac{x^2}{6}-\frac{y^2}{3}=1$的焦点为F1、F2,点M在双曲线上且MF1⊥F1F2,则F1到直线MF2的距离为( )
| A. | $\frac{{3\sqrt{6}}}{5}$ | B. | $\frac{{5\sqrt{6}}}{6}$ | C. | $\frac{6}{5}$ | D. | $\frac{5}{6}$ |
10.
为了解某高校学生中午午休时间玩手机情况,随机抽取了100名大学生进行调查.下面是根据调查结果绘制的学生日均午休时间的频率分布直方图:将日均午休时玩手机不低于40分钟的学生称为“手机控”.
(1)求列表中数据的值;
(2)能否有95%的把握认为“手机控”与性别有关?
注:k2=$\frac{n(ac-bd)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
| 非手机迷 | 手机迷 | 合计 | |
| 男 | x | x | m |
| 女 | y | 10 | 55 |
| 合计 | 75 | 25 | 100 |
(2)能否有95%的把握认为“手机控”与性别有关?
注:k2=$\frac{n(ac-bd)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
| P(k2≥x0) | 0.05 | 0.10 |
| k0 | 3.841 | 6.635 |
8.已知函数f(x)=2sin(ωx+φ)-1(ω>0,|φ|<π)的一个零点是$x=\frac{π}{3}$,$x=-\frac{π}{6}$是y=f(x)的图象的一条对称轴,则ω取最小值时,f(x)的单调增区间是( )
| A. | $[{-\frac{7}{3}π+3kπ,-\frac{1}{6}π+3kπ}],k∈Z$ | B. | $[{-\frac{5}{3}π+3kπ,-\frac{1}{6}π+3kπ}],k∈Z$ | ||
| C. | $[{-\frac{2}{3}π+2kπ,-\frac{1}{6}π+2kπ}],k∈Z$ | D. | $[{-\frac{1}{3}π+2kπ,-\frac{1}{6}π+2kπ}],k∈Z$ |