题目内容
已知函数
,其中
.
(1)当
时,求曲线
在原点处的切线方程;
(2)求
的单调区间.
(1)当
(2)求
(1)
(2)
的单调增区间是
,
;单调减区间是
(2)
本试题主要是考查导数在研究函数中的 运用求解函数的单调性和函数的切线方程的 综合运用。
(1)先求解函数在该点的导数值,然后得到斜率和点的坐标,进而利用点斜式得到直线的方程。
(2)
对于参数a分为大于零,小于零,等于零三种情况分析讨论单调性得到结论。
解:(1)当
时,
,
. ……………2分
由
, 得曲线
在原点处的切线方程是
.………4分
(2)
.……………5分
① 当
时,
.
所以
在
单调递增,在
单调递减. ……7分
当
,
.
② 当
时,令
,得
,
,
与
的情况如下:
故
的单调减区间是
,
;单调增区间是
.…10分
③ 当
时,
与
的情况如下:
所以
的单调增区间是
,
;单调减区间是
………12分
(1)先求解函数在该点的导数值,然后得到斜率和点的坐标,进而利用点斜式得到直线的方程。
(2)
对于参数a分为大于零,小于零,等于零三种情况分析讨论单调性得到结论。
解:(1)当
由
(2)
① 当
所以
当
② 当
| ↘ | ↗ | ↘ |
故
③ 当
| ↗ | ↘ | ↗ |
所以
练习册系列答案
相关题目