题目内容
设函数f(x)=(sinωx+cosωx)2+2cos2ωx-2(ω>2)的最小正周期为
.
(1)求ω的值;
(2)若把函数y=f(x)的图象向右平移
个单位长度,得到了函数y=g(x)的图象,求函数y=g(x),x∈[-
,
]的值域.
| 2π |
| 3 |
(1)求ω的值;
(2)若把函数y=f(x)的图象向右平移
| π |
| 2 |
| π |
| 3 |
| π |
| 12 |
(1)函数f(x)=(sinωx+cosωx)2+2cos2ωx-2=1+sin2ωx+2cos2ωx-2=sin2ωx+cos2ωx
=
sin(2ωx+
),
由T=
=
,∴ω=
.
(2)由(1)可知,f(x)=
sin(3x+
),故g(x)=
sin[3(x-
)+
]=
cos(3x+
),
∵-
≤ x ≤
,∴-
≤3 x +
≤
,∴-
≤cos(3x+
)≤1,
-1≤
cos(3x+
)≤
,故函数g(x)的值域为[-1,
].
=
| 2 |
| π |
| 4 |
由T=
| 2π |
| ω |
| 2π |
| 3 |
| 3 |
| 2 |
(2)由(1)可知,f(x)=
| 2 |
| π |
| 4 |
| 2 |
| π |
| 2 |
| π |
| 4 |
| 2 |
| π |
| 4 |
∵-
| π |
| 3 |
| π |
| 12 |
| 3π |
| 4 |
| π |
| 4 |
| π |
| 2 |
| ||
| 2 |
| π |
| 4 |
-1≤
| 2 |
| π |
| 4 |
| 2 |
| 2 |
练习册系列答案
相关题目