题目内容
在△ABC中,∠A=
,BC=3,AB=
,则∠C=______;sinB=______.
| π |
| 3 |
| 6 |
由正弦定理可得,
=
∴sinC=
=
=
∵BC>AB
∴
π=A>C
∴C=
∴sinB=sin(A+C)=sinAcosC+sinCcosA
=
×
+
×
=
故答案为:
,
| BC |
| sinA |
| AB |
| sinC |
∴sinC=
| ABsinA |
| BC |
| ||||||
| 3 |
| ||
| 2 |
∵BC>AB
∴
| 1 |
| 3 |
∴C=
| π |
| 4 |
∴sinB=sin(A+C)=sinAcosC+sinCcosA
=
| ||
| 2 |
| ||
| 2 |
| ||
| 2 |
| 1 |
| 2 |
| ||||
| 4 |
故答案为:
| π |
| 4 |
| ||||
| 4 |
练习册系列答案
相关题目