题目内容
等差数列{an}中,a3=7,a1+a2+a3=12,令bn=anan+1,数列{
}的前n项和为Tn.
(1)求数列{an}的通项公式.
(2)求证:Tn<
| 1 |
| bn |
(1)求数列{an}的通项公式.
(2)求证:Tn<
| 1 |
| 3 |
(1)设数列{an}的公差为d,
∵a3=7,a1+a2+a3=12
∴
解得
∴数列{an}的通项公式为:an=3n-2(n∈N*)
(2)∵bn=anan-1,
∴bn=(3n-2)(3n+1)
∴
=
(
-
)
∴数列{
}的前n项和
Tn=
[1-
+
-
+
-
++
-
+
-
]
=
(1-
)
<
∵a3=7,a1+a2+a3=12
∴
|
解得
|
∴数列{an}的通项公式为:an=3n-2(n∈N*)
(2)∵bn=anan-1,
∴bn=(3n-2)(3n+1)
∴
| 1 |
| bn |
| 1 |
| 3 |
| 1 |
| 3n-2 |
| 1 |
| 3n+1 |
∴数列{
| 1 |
| bn |
Tn=
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| 4 |
| 1 |
| 7 |
| 1 |
| 7 |
| 1 |
| 11 |
| 1 |
| 3n-5 |
| 1 |
| 3n-2 |
| 1 |
| 3n-2 |
| 1 |
| 3n+1 |
=
| 1 |
| 3 |
| 1 |
| 3n+1 |
<
| 1 |
| 3 |
练习册系列答案
相关题目