题目内容
已知两个等差数列{an}和{bn}的前n项和分别为An和Bn,且
=
,则使得
为整数的正整数n的个数是
| An |
| Bn |
| 7n+45 |
| n+3 |
| a2n |
| bn |
1
1
.分析:通过已知条件.结合
=
,设出An,求出an,设出Bn求出bn,推出
,然后求出
为整数的正整数n的个数.
| An |
| Bn |
| 7n+45 |
| n+3 |
| a2n |
| bn |
| a2n |
| bn |
解答:解:由
=
,可设An=kn(7n+45)⇒an=An-An-1=14kn+38k,
设Bn=kn(n-3)⇒bn=Bn-Bn-1=2kn+2k,所以a2n=28kn+38k,
=
=14+
,故n=4.
故答案为:1.
| An |
| Bn |
| 7n+45 |
| n+3 |
设Bn=kn(n-3)⇒bn=Bn-Bn-1=2kn+2k,所以a2n=28kn+38k,
| a2n |
| bn |
| 14n+19 |
| n+1 |
| 5 |
| n+1 |
故答案为:1.
点评:本题是基础题,考查数列的基本性质的应用,设出数列的前n项和,是解题的关键.
练习册系列答案
相关题目