搜索
题目内容
函数f(x)=
,则f(4)=
A.
±3
B.
3
C.
-3
D.
9
试题答案
相关练习册答案
B
分析:以4代解析式中的x,代入计算即可.
解答:f(4)=
=3
故选B.
点评:本题是最基本的函数值求解类型.
练习册系列答案
永乾教育暑假作业快乐假期延边人民出版社系列答案
暑假作业河北美术出版社系列答案
轻松暑假快乐学习系列答案
开心暑假西南师范大学出版社系列答案
新课程暑假BOOK系列答案
动感假期内蒙古人民出版社系列答案
智多星学与练快乐暑假宁夏人民教育出版社系列答案
暑假作业语文出版社系列答案
暑假作业河北教育出版社系列答案
步步高暑假作业高考复习方法策略黑龙江教育出版社系列答案
相关题目
设函数f(x)=a
2
x
2
(a>0),g(x)=blnx.
(1)若函数y=f(x)图象上的点到直线x-y-3=0距离的最小值为
2
,求a的值;
(2)关于x的不等式(x-1)
2
>f(x)的解集中的整数恰有3个,求实数a的取值范围;
(3)对于函数f(x)与g(x)定义域上的任意实数x,若存在常数k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,则称直线y=kx+m为函数f(x)与g(x)的“分界线”.设
a=
2
2
,b=e,试探究f(x)与g(x)是否存在“分界线”?若存在,求出“分界线”的方程;若不存在,请说明理由.
已知函数f(x)满足对任意实数x,y都有f(x+y)=f(x)+f(y)+1成立,且当x>0时,f(x)>-1,f(1)=0.
(1)求f(5)的值;
(2)判断f(x)在R上的单调性,并证明;
(3)若对于任意给定的正实数ε,总能找到一个正实数σ,使得当|x-x
0
|<σ时,|f(x)-f(x
0
)|<ε,则称函数f(x)在x=x
0
处连续.试证明:f(x)在x=0处连续.
函数f(x)定义在实数集R上,f(x+y)=f(x)+f(y),且当x>0时,f(x)<0则f(x)( )
A.奇函数且在R上是单调增函数
B.奇函数且在R上是单调减函数
C.偶函数且在R上是单调减函数
D.偶函数且在R上不是单调函数
(2013•成都二模)对于定义在区间D上的函数f(x),若满足对?x
1
,x
2
∈D,且x
1
<x
2
时都有 f(x
1
)≥f(x
2
),则称函数f(x)为区间D上的“非增函数”.若f(x)为区间[0,1]上的“非增函数”且f(0)=l,f(x)+f(l-x)=l,又当x∈[0,
1
4
]时,f(x)≤-2x+1恒成立.有下列命题:
①?x∈[0,1],f(x)≥0;
②当x
1
,x
2
∈[0,1]且x
1
≠x
2
,时,f(x
1
)≠f(x)
③f(
1
8
)+f(
5
11
)+f(
7
13
)+f(
7
8
)=2;
④当x∈[0,
1
4
]时,f(f(x))≤f(x).
其中你认为正确的所有命题的序号为
①③④
①③④
.
设函数f(x)=a
2
x
2
(a>0),g(x)=blnx.
(1)若函数y=f(x)图象上的点到直线x-y-3=0距离的最小值为
2
2
,求a的值;
(2)关于x的不等式(x-1)
2
>f(x)的解集中的整数恰有3个,求实数a的取值范围;
(3)对于函数f(x)与g(x)定义域上的任意实数x,若存在常数k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,则称直线y=kx+m为函数f(x)与g(x)的“分界线”.设
a=
2
2
,b=e,试探究f(x)与g(x)是否存在“分界线”?若存在,求出“分界线”的方程;若不存在,请说明理由.
关 闭
试题分类
高中
数学
英语
物理
化学
生物
地理
初中
数学
英语
物理
化学
生物
地理
小学
数学
英语
其他
阅读理解答案
已回答习题
未回答习题
题目汇总
试卷汇总
练习册解析答案