题目内容

8.已知a,b为正数,a+2b=6,则$\sqrt{2a+b}$+$\sqrt{a+5b}$的最大值为(  )
A.6B.4C.3D.$\sqrt{3}$

分析 根据基本不等式的性质先求出$\sqrt{2a+b}$$\sqrt{a+5b}$的最大值,再求出${(\sqrt{2a+b}+\sqrt{a+5b})}^{2}$的值,从而得到答案.

解答 解:∵a,b为正数,a+2b=6,
∴$\sqrt{2a+b}$•$\sqrt{a+5b}$≤$\frac{2a+b+a+5b}{2}$=$\frac{3(a+2b)}{2}$=9,
当且仅当2a+b=a+5b即a=4,b=1时成立,
而${(\sqrt{2a+b}+\sqrt{a+5b})}^{2}$
=2a+b+a+5b+2$\sqrt{2a+b}$•$\sqrt{a+5b}$
=3(a+2b)+2$\sqrt{2a+b}$$\sqrt{a+5b}$
≤18+18
=36,
∴$\sqrt{2a+b}$+$\sqrt{a+5b}$≤6,
故选:A.

点评 本题考查了基本不等式的性质,考查转化思想,将$\sqrt{2a+b}$+$\sqrt{a+5b}$平方,并求出$\sqrt{2a+b}$$\sqrt{a+5b}$的最大值是解题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网