题目内容
已知a、b为正数,a+b=1,t1、t2为正数,求证:(at1+bt2)(bt1+at2)≥t1·t2.
证明:由柯西不等式,得
(at1+bt2)(bt1+at2)=(at1+bt2)(at2+bt1)
=![]()
=t1t2(a+b)2=t1t2.
练习册系列答案
相关题目
题目内容
已知a、b为正数,a+b=1,t1、t2为正数,求证:(at1+bt2)(bt1+at2)≥t1·t2.
证明:由柯西不等式,得
(at1+bt2)(bt1+at2)=(at1+bt2)(at2+bt1)
=![]()
=t1t2(a+b)2=t1t2.