题目内容
已知AD是△ABC的中线,
=λ
+μ
(λ, μ∈R),那么λ+μ=
•
=-2,则|
|的最小值是
| AD |
| AB |
| AC |
1
1
;若∠A=120°,| AB |
| AC |
| AD |
1
1
.分析:由题意可得,
+
=
,而由
=
+
,
=
+
可得,结合已知,可求λ,μ
由
•
=|
|•|
|cos120°=bccos120°=-2可得bc=4,由|
|=
|
+
|=
=
=
,由基本不等式可求
| BD |
| CD |
| 0 |
| AD |
| AB |
| BD |
| AD |
| AC |
| CD |
由
| AB |
| AC |
| AB |
| AC |
| AD |
| 1 |
| 2 |
| AB |
| AC |
| 1 |
| 2 |
(
|
| 1 |
| 2 |
|
| 1 |
| 2 |
| c2+b2-4 |
解答:解:D是△ABC边BC的中点
∴
=-
即
+
=
∵
=
+
=
+
∴2
=
+
+
+
=
+
即
=
(
+
)
∵
=λ
+μ
(λ, μ∈R),
∴λ=μ=
∴λ+μ=1
∵
=
(
+
),
•
=-2
又
•
=|
|•|
|cos120°=bccos120°=-2
∴bc=4
∴|
|=
|
+
|=
=
=
≥
=1(当且仅当b=c时取等号)
|
|的最小值为1
故答案为:1;1
∴
| BD |
| CD |
| BD |
| CD |
| 0 |
∵
| AD |
| AB |
| BD |
| AD |
| AC |
| CD |
∴2
| AD |
| AB |
| AC |
| BD |
| CD |
| AB |
| AC |
即
| AD |
| 1 |
| 2 |
| AB |
| AC |
∵
| AD |
| AB |
| AC |
∴λ=μ=
| 1 |
| 2 |
∴λ+μ=1
∵
| AD |
| 1 |
| 2 |
| AB |
| AC |
| AB |
| AC |
又
| AB |
| AC |
| AB |
| AC |
∴bc=4
∴|
| AD |
| 1 |
| 2 |
| AB |
| AC |
| 1 |
| 2 |
(
|
| 1 |
| 2 |
|
=
| 1 |
| 2 |
| c2+b2-4 |
| 1 |
| 2 |
| 2bc-4 |
|
| AD |
故答案为:1;1
点评:本题主要考查了向量加法的三角形法则及向量的数量积的基本运算,向量数量积的运算性质,基本不等式求解最值,属于基本知识的综合应用.
练习册系列答案
相关题目