题目内容
已知α,β∈(A.
B.
C.-
D.-
【答案】分析:由α与β的范围求出α+β的范围,以及β-
的范围,利用同角三角函数间的基本关系求出cos(α+β)及cos(β-
)的值,所求式子中的角度变形后,利用两角和与差的余弦函数公式化简,将各自的值代入计算即可求出值.
解答:解:∵α,β∈(
,π),
∴α+β∈(
,2π),β-
∈(
,
),
∵sin(α+β)=-
,sin(β-
)=
,
∴cos(α+β)=
,cos(β-
)=-
,
则cos(α+
)=cos[(α+β)-(β-
)]=cos(α+β)cos(β-
)+sin(α+β)sin(β-
)=
×(-
)+(-
)×
=-
.
故选C
点评:此题考查了两角和与差的余弦函数公式,以及同角三角函数间的基本关系,熟练掌握公式是解本题的关键.
解答:解:∵α,β∈(
∴α+β∈(
∵sin(α+β)=-
∴cos(α+β)=
则cos(α+
故选C
点评:此题考查了两角和与差的余弦函数公式,以及同角三角函数间的基本关系,熟练掌握公式是解本题的关键.
练习册系列答案
相关题目
某地区为下岗人员免费提供财会和计算机培训,以提高下岗人员的再就业能力.每名下岗人员可以选择参加一项培训、参加两项培训或不参加培训,已知参加过财会培训的有60%,参加过计算机培训的有75%.假设每个人对培训项目的选择是相互独立的,且各人的选择相互之间没有影响.
(Ⅰ)任选1名下岗人员,求该人参加过培训的概率;
(Ⅱ)任选3名下岗人员,记ξ为3人中参加过培训的人数,求ξ的分布列和期望.
(Ⅰ)任选1名下岗人员,求该人参加过培训的概率;
(Ⅱ)任选3名下岗人员,记ξ为3人中参加过培训的人数,求ξ的分布列和期望.
| ξ | 0 | 1 | 2 | 3 |
| P | 0.021 | 0.027 | 0.243 | 0.729 |
已知函数f(x)=-x3+ax2-x-1在(-∞,+∞)上是单调函数,则实数a的取值范围是( )
A、(-∞,-
| ||||
B、[-
| ||||
C、(-∞,-
| ||||
D、(-
|
已知函数f(x)=
若f(2-a2)>f(a),则实数a的取值范围是( )
|
| A、(-∞,-1)∪(2,+∞) |
| B、(-1,2) |
| C、(-2,1) |
| D、(-∞,-2)∪(1,+∞) |