题目内容

设Sn为数列{an}的前n项和(n=1,2,3,……)。按如下方式定义数列 {an}:a1=m(m∈N*),对任意k∈N*,k>1,设ak为满足0≤ak≤k-1的整数,且k整除Sk
(Ⅰ)当m=9时,试给出{an}的前6项;
(Ⅱ)证明:k∈N*,有
(Ⅲ)证明:对任意的m,数列{an} 必从某项起成为常数列。
解:(Ⅰ)m=9时,数列为9,1,2,0,3,3,3,3,
即前六项为9,1,2,0,3,3。
(Ⅱ)
 (Ⅲ)
由(Ⅱ)可得
为定值且单调不增,
∴数列必将从某项起变为常数,
不妨设从l项起为常数,则
于是
所以
所以{an}当n≥l+1时成为常数列。
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网